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streaming Data

• Sensor data

° Images
• Internet /web traffic
• Real- time processing

STREAMING DATA MODEL

real time

main

memory

•

Multiple streams at different rates (not synchronised)

. Archival store : offline analysis

• Working store : real-time analysis
- disk / memory ( usually memory)



Consider the queries below. Which among them are STANDING 

QUERIES and which are AD HOC?

•  Alert when temperature > threshold

•  Display average of last n temperature readings; n arbitrary

•  List of countries from which visits have been received over 
last year

•  Alert if website receives visit from a black-listed country

Types of stream Queries

1. Standing Queries

•

produce OIP at appropriate time
•

query continuously running
-

constantly read new data

•

query exec can be optimised
-

eg: no .
of vehicles passing intersection every hour

•

eg: Max temp ever recorded

2. Ad hoc Queries

• not predetermined ; arbitrary
• need to store stream

• do SQL query
•

eg : no . of unique users in the last 30 days

Q :

standing

ad-hoc

ad-hoc

standing



•  The input is a stream of records 
from the stock market.

•  Each time a stock is sold, a new 
record is created.

•  The record contains a field 
num_stock which is the number of 
stocks sold.

•  Find_max is a program that 
updates a variable Max_num_stock 
which is the maximum of 
num_stock.

Issues in stream Processing
• Velocity thigh?

• Volume (high)

• Need to store in memory

Framework Requirements

☐ Scalable to large clusters

• Second - scale latencies Clow latencies)
• simple programming model

• Integrated with batch 6 interactive processing
- Efficient fault tolerance

0 : can Hadoop be used?



• If Hadoop used
,
data must be stored and Max program

must run on entire dataset

• All transactions stored onto file

• Run MR program and share global Max variable across

nodes - difficult

case study : Coniva Inc .

• Real- time monitoring of online metadata

• two processing stacks

1. custom-built distributed stream processing system
-

many nodes req

2. Hadoop backend for offline analysis
- similar computation as the streaming system

• Twice the effort
, bugs

stateful stream Processing

• Traditional streaming : event-driven , record -at -a-time processing
model

- each node : state

- every record : update state



• state lost if node dies

• Hard to make stateful stream processing fault tolerant

• Global State : where to store?

Existing streaming systems

1. Storm
• Processes each record at least once

•

May update mutable state twice

•

Replays record if not processed

2. Trident
• use transactions to update state

• process each record exactly once

• Per state transaction updates slow



SPARK STREAMING

• Framework for large-scale stream processing
• 100s of nodes
•

Integrates with Spark's batch and interactive processing
• Provides batch - like API for implementing complex algorithm
• can absorb live data streams - Kafka

,
Flume

,
ZeroMQ etc

can Hadoop be modified ?

• Assume 1sec updates acceptable
•

Hadoop for stream processing?
• Ignore global variable problem

• Batch together input records every 1 sec into single HDFS

file
•

Every file processed using MR

• Update every second



Discretised Stream Processing
• chop live stream into batches of ✗ seconds

• Each batch treated as RDD by Spark

• Processed results of RDD operations returned in batches

• Batch sizes as low as 42 second
, latencies as low as 1 sec

• Potential : combine batch processing and stream processing



// twitterStream returns variable of type Dstream
// Dstream: sequence of RDD representing a stream of data
val tweets = ssc.twitterStream(<Twitter username>, <Twitter 
password>) 

// hashTags is new object of type Dstream
// flatMap transformation
// Dstream is sequence of RDDs
val hashTags = tweets.flatMap (status => getTags(status))

// Push data to external storage (HDFS)
hashTags.saveAsHadoopFiles("hdfs://...")

☐streams

• In Spark (not streaming spark)
-

every variable
- RDD

- Pair RDDS - key-value pairs

Example: Get hashtags from Twitter



Spark streaming- Execution of Jobs

1. DStreams and Receivers

•

Streaming spark - batch processing

-

Every ☐stream associated with receiver

- read data from source

- store into Spark memory for processing
-

types
d) Basic - file systems , sockets
di> Advanced - Kafka

,
flume

• Relationship between DStream and RDD



Consider a Dstream on stock quotes generated similar to earlier 
that contains
•  A sequence of tuples that contain <company name, stock sold>
•  Need to find total shares sold per company in the last 1 minute

Show Streaming spark design for the same.

°

Streaming spark processes job

• starts receiver on an executor as a long running job

• Driver starts tasks to process blocks on every interval

2. Transformations in Spark

• stateless
• stateful

(a) Stateless transformations

• Transformation applied independently to every batch

• No info carried forward from one batch to next

• Examples
• Mapl)
• Flatmapl)
• Filter C)

• Repartition C)
• reduceBykeyl)
•

groupBykeyl)

Q:



RDD RDD RDD
Dstream

> batch @ t batch@ t-11 batch@ t-12

(minutes)

reduce By key
✓ ccxiy>⇒ xty) ✓ u

✓

save
✓

save
✓

save

HDFS HDFS HDFS

(b) Stateful Transformation

• state stored across different batches of data

• Eg : Max amount of stock sold across whole day for a

company

• Data : pair RDDS

• Spark: two options
G) Window operator : state maintained for short periods of
time (sliding window?

di> Session based : state maintained for longer

d) Window -based

Example : count hashtags over last 10 mins

(move window by)



•

Smart Window - Based countryValue

smart window-based Reduce

• Reduce
,
inverse reduce

• Could have implemented counting as



▪  What has to be the structure of the RDD tweets?
Hint – note that updateStateByKey needs a key

▪  What does the function updateMood do?
Hint – note that it should update per-user mood

▪  updateStateByKey finds the current mood – Happy

▪  current mood (Happy) and tweet (Eating icecream) is passed to updateMood

▪  updateMood calculates new mood as VeryHappy

▪  updateStateByKey stores the new mood for Dinkar as VeryHappy

Lii, session - based

D: Maintain per-user mood as state
, update with their tweets

I

2

1. tweets : ( user
,
mood>

2. Compute new mood based on current mood 4 new tweet



Fault Tolerant stateful Processing
• All intermediate data are RDDS

• Can recompute if lost

d) Fault in stateless
•

recompute

di) Fault in stateful
• how much data to retain?

checkpointing
• stores an RDD

• Forgets lineage
•

checkpoint at t-12
- stores hashtags and tagcounts at t-12
- forgets rest of lineage



Performance



Fast Fault Recovery

T
Checkpoint

Real Applications



Spark , Shark Hike Hive) , Spark Streaming

Be



Spark vs spark streaming

streaming Spark limitations

• Near real time

• Not necessarily acceptable for certain scenarios



Kafka

• Processing of events
° Events processed on server

• Multiple data sources
• Multiple clients over pool of connections

• Multiple backend servers on which to process same data



Give an example of how datapipelines could be used. What 
are some examples of backends?

Q :

Hadoop

security

real - time

analytics

Kafka Architecture
• Publishers (producers) and subscribers (consumers)
• Kafka is broker Cdecouples data pipeline)



Pub - Sub Model

Role of Producer

• Defines what data it wants to send

° Publishes onto communication infrastructure

• Also called publisher

Role of consumer

• Tells communication infrastructure what type of messages
it wants to receive

• Does not specify whom to receive message from

°

Messages delivered to consumer by communication
infrastructure

• Also called subscriber



Role of communication Infrastructure

• Routing
(a) Topic - based
(b) content - based

(a) Topic-based routing
• Pub : send messages with topic labels

• Sub : subscribe to topics , receive all messages on that

topic

•

Eg: subscribe to all fire sensors in b block

(b) Content-based routing
• Sub : define matching criteria , receive all messages that
match criteria

• Eg: Subscribe to ads that feature Virat Kohli

• Not supported by Kafka

• pattern- based supported by Kafka
- wildcard expression for a topic
-

Eg: topics with * ipl *



Consider a bookstore portal with various activities such as
Login
List books
Get book details
Buy book
Check status of order Return book
Logout

Assume we have 3 backend modules 
Security
Order processing 
Book information

(a) Would you use a topic-based or content-based system? 
(b) What would be the topics / content?

Pros and cons of communication

Pros

• No hard-wired connections between pub 4 sub

• Flexible : easy to add / remove pub and sub

cons

•

Design and maintenance of topics

• Performance overhead due to communication infrastructure

cone extra hop)

d :



(a) Topic - based
(b) each Msg can be a topic



Scaling in Kafka

' Each Kafka server responsible for a certain topic
(avoid bottleneck)

☐ What if one topic too big for single server?
- Partitions for a topic

• Partitions allow

- logs > disk size

- throughput > single server

• Distributed over servers

• How to partition?
- Round Robin

- based on key chasm



How can reliability be guaranteed in Kafka?
Hint: How does HDFS guarantee reliability?

Example

weather f- 3 partitions (buckets?

cricket I 2 partitions Cbuckets)

• Producer sends to partition?

Fault tolerance in Kafka

Q :

• Redundancies across partitions

µ
-
-
- -

- -
-

-

p.
-
-
- -

-

-

- p.

So Si Sz

• Must be real- time cannot wait to make copies)

Kafka

• Partitions replicated
- leader : all reads

,
writes

- followers : replicate



• Durability levels
- Sync : after quorum writes

•

quorum
-_ 2
, replicas =3 ⇒ if 213 replicas made

•

quorum
-

- min no of replicas for the write to

succeed
•

quora need to replicate

- Async
d) 0 = leader only (check with leader if data received)

di, - 1- = no write
• Possible loss of data (if leader fails)
• leader's responsibility to ensure followers are

replicated Cno guarantee>

message Delivery to consumers



In the below configuration, how is the load balanced over all 
the instances?

Suppose we have a Kafka system 
1 topic
3 servers
3 partitions
3 replicas per partition 
Consumer group with 3 instances

Draw a diagram showing 
Servers
Partitions
Consumer instances 
Partition assignments

Q :

Group A Group B

a assigned PO ,P3 Cz assigned Po

C2 assigned PI , P2 Cy assigned Pl

Cs assigned PZ

Cg assigned P3

Q:



Kafka cluster

so Si Sa

#
POP, Pop

,

R Pop,

Pz Pz
leader

1. It
Ci C2 (3

Consumers

Kafka Performance



LinkedIn: Activity data and Operational metrics.

Twitter: Uses it as part of Storm stream Processing infrastructure.

Square: Kafka as bus to move all system events to various 
Square data centers (logs, custom events, metrics, and so on). 
Outputs to Splunk, Gtaphite,Esper-like alerting systems.

Spotify, Uber, Tumbler, Goldman Sachs, PayPal, Box, Cisco, 
Cloud Fatr, DataDog, LucidWorks, MailChimp, Netflix, etc.

YO

• Sequential reads by consumer

• sequential writes by producers

Zero - Copy Yo

• DMA

• No copy from kernel to user

Usage of Kafka



streaming Algorithms
• Stream processing : processing of events in never-ending stream

• Need to store summaries

Approach 1

• Breakup stream into window of events

° Apache spark - relational operations on a window

• Summary of each window of size n

Issues

- velocity of stream

* diff rates for diff streams

* instantaneous decisions

- no . of streams

* stress in memory

- cannot store on disk

* too slow



- need approximate solution
,
not exact

- often use hashing to introduce randomness

SAMPLING ALGORITHMS

• Given long stream of elements, pick representative
sample

" Eg: search engine : what fraction of the typical user's queries
were repeated over the past month?

Obvious Algorithm

• For every stream tuple , generate a random number 10,9]

• If value == 0
,
store the tuple . Otherwise discard



Flaw in Obvious Algorithm

• Probability of duplicate query = ¥

Refined Algorithm

• Sample Hoth of users

• Check if user in sample
- If they are

,
add query

- If not
, assign number in [0,91 to user and add if number-- O

• Hash the username to a number from 0 to 9

- if 0
,
select

• No need to search the entire data structure

• GIGO : garbage in , garbage out analysis
- must give clean data for clean output



Suppose we want a sample dataset to debug a program that profiles 

transactions by user and country

How would I generate a 1/20 sample?

Generalisation

•

key components of query there
,
user)

• Prev : < user
, query, time>

• Hash key components in the range co
>
b)

• To get sample size alb
,
select query if hash (key comp) < a

Q:

key component : user , country

map hashcuser
, country) → [0,19]

if hash laser
, country)==o , select

FILTERING ALGORITHMS

• Filter events based on data

• Eg: stream of emails
,
remove all spam emails

• Constraints

- 1 GB memory
- 1 billion well- known non - spam emails

- 20 bytes/ email address

• cannot store on disk



BLOOM FILTER

• 1 GB memory :
8×109 = 8 billion bit string

• Bloom filter initialization
- Hash non- spam email ids to [0,8×109-1]
- set corresponding bits to I

• Usage
- Hash incoming email ID

- Check bloom filter entry
- If 0

, definitely not seen before → spam
- If 1

,
not sure if seen before Chash collision)



GENERAL BLOOM FILTERS

• Bloom filter consists of
-

array of n bits ( size of memory)
- collection of K hash functions h

, ,
ha
,

. . -

, hk
- sets of keys with m elements (known non - spam)

• Purpose : given a key a , determine if it is in s

• Initialisatin
- for all keys in S

-

compute all K hash functions

- set corresponding bits to 1

• Usage
- hash incoming key with all k hash functions
- if all corresponding bits are 1

,
known non- spam

• Chance of false positive CI - e-
km/h
)
"

derivation : R1
, page 141

Eg : top - insertion , bottom - check



Q: Is c spam or not spam or possibly spam ?

c- spam (one 07

Extensions

• Use secondary storage

•

cascading bloom filters
- 2 bloom filters in series

- If bit is 1
,
use second BF

0 > O

O o

> I 0

0 I

0 I



COUNTING DISTINCT ELEMENTS

• No of distinct users visiting a website

Flajolet Martin Algorithm

• Pick hash function bigger than set to be hashed

• Eg : for counting IP addresses
,
hash > 4 billion

for counting URLs , use 64 bits

Basic Property

• Tail length for hash function: no . of 0 's at end of the hash

for a given hash function

-

eg: 11111001000g tail length =3

• Hash each element in stream

• Let R= Max tail length of all bit strings

• 2R is approximately the number of distinct elements

seen

Q : Count no . of user IDs that visit a webpage using mid

square hash

ID sequence : 10
, 10,7 , 10,6 , 14 , 14 , 12 , 6

,
5
,
7

Mid Square hash : cube user ID , make 12 bits
,
take middle

6 bits



10 1010 14 1110

} do not7 0111 12 1100 use directly
6 0110 5 0101

103--1000 = 001 I 1110 I 000

73--343 = 000 I 0101 0 111

63--216 = 000 0 1101 I 000

143--2744 = 101 0 1011 I 000

123--1728 = 011 0 1100 0 000

53 = 125 = 000 0 0111 I 101

-

middle 6

Max tail length =3

distinct users -- 23--8

Working of Algorithm

half odd

•

half even



• PC hash(a) ends in at least ro 's ) =

¥ = 2-
r

• Suppose hash = hihz . . .hn

• Pchn -- O) =

÷

Plhn
.,hn = 00 ) = 2- ✗÷

= 2-2

Plhn
-r+ ,

. . .hn = 00
. . .
0) = 2-

r

D: Pctail length is r) = 2-
r

If there are m elements in the stream
,
Phone have tail

length r) = ?

P(none have TL -_r) = ( 1- 2-
r )^= e-

m"
where ✗ = 2-

°



• m >> 2
'

, mx = F- >> 0

i. e-
M"

= 0

i. I - e-
m"

=L

• m ~ 2s
,
mx =

my
= I

i. e-
m"

-

-

±

i. I - e-
M"

= some finite probability

• m LL 2
'

,
MK I 0

.

-

. e-
M"

= I

i. I - e
-m"

= 0

Flajolet Martin in Practice

✓
elements in stream

• Simple approach
- 1 hash function

,
m is always power of 2

-

pick k hash functions
,
estimate m=2R for each

- take avg or mean

• Problems
-

avg pulled towards Max/ outliers
- median : estimate always power of 2



• combined approach
- divide k hashes into groups
- compute avg of each group (unique elements)
- median of avgs


